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I. Introduction traditional LPC , it will divide the signal into fewer
segments. This could result in a possible reduc-

Parametric analysis and modeling of signals tion of the total number of parameters needed to
~~~ us ing  an autoregressive model with constant coef- accurately model a segment of data for time-

ficients has found application in a variety of con- varying LPC as compared with re gular LPC .
texts including speech and seismic signal pro-
cessing, spectral estimation , process control and An interesting problem in i tse l f  is the quest ion
others. In many cases , the signal to be modeled of how exactly to measure and assess the perfo r-
is t ime-varying.  Howeve r , if the time variation mance of the time- varying LPC estimation method.
is relatively slow , it is nevertheless reasonable to One of the goals of this work has been to explore
app ly a constant model on a short-t ime basis ,  up- methods for understanding the t ime-varying models
dating the coeff icients  as the analysis proceeds and for evaluating the i r  perfo rmance.
through the data [1], [21.

> II. Time-Varying Linear Predict ion
In this paper , we conside r autoregressive sig-

nal modeling in which the coefficients are time- For all-pole signal modeling, the signal s(n)
varying. In our method , each coefficient in the at time n is modeled as a linear combination of
model is allowed to change in time by assuming it the past p samples and the input u (n ) , i. e . ,
is a l inear  combinat ion of some set of known time

LJJ functions. Using the same least- squares error p

• ,....J technique as used for modeling with constant coef- s(n) = — E a . s (n—i )  + Gu(n) . (2. 1)
f ic ients  (LPC , see Section II) , the coeff ic ients  of i= l
the l inear combinations of the time functions can
be found by solving a set of linear equations. The method of l inear prediction (or linear

C~~~ There fore the determination of the model param- predictive coding LPC) has been used to estimate
the coeff icients  and the gain factor [l 1,[2 1. Foreters for t ime-varying LPC is s imilar  to that for LPC, it is assumed that the signal is stationarytraditional LPC , but there is a larger number of ove r the time interval of interest  and therefore the

~~~ coefficients that must be obtained for a given order coefficient s given in the model of Eq. a. I are con-model. stants. For speech , for exam ple , this is a reason-
There are many possible advantage s of t ime- able approximation over short intervals ( 10-30

varying LPC. The system model may be more msec) .
realistic since it allows for a continuously changing
behavior of the si gnal. Tht s  should enable the For the method of t ime-varying linear pre-
model to have increaseG accuracy and sensit ivity , diction , the prediction coefficients are allowed to
In addit ion , the method may be more eff ic ient  since change with time , so that (2. 1) becomes
it will allow for the analysis over longe r data win- P
dows. Therefore , even thou gh t ime-varying LPC s(n) = — 

~ 
a~(n) s(n—i) + Gu(n) . (2 .2)

involve s a large r number of coefficients than i=l

*This work was conduc t ed in part at the M . I . T .  Research Laboratory of Electronics with partial support
provided by the Advanced Research Projects Agency monitored by ONR under Contract NO 00l4-7~ -C-
O 9 Sl-N R 049- 308 , and in part at the M .I .T . Electronic Systems Laboratory with partial support provided
by the A i r  Force Office of Scient i f ic  Research under Grant AFOSR-77-3281.
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C.:
With this model , the signal is not assumed to be P q
stationary and therefo re the t ime-varying nature E E a.k ck~ (i ,)) = 

~
cot (O ,j )  1 ~~ ~of the coeff ic ient  a.(n) must  be specified. i= 1 k=0 0 ~ ~ q.

(~~. 10)
The actual time variation of a1(n) is generally

not known. However , the coefficients can be ap- For the coefficient ck~
(i ,j ) , the subscripts k and I

proximated as a linear combination of some known refer to the set of time functions , while the van -
functions of tim e , uk ( n), so that ables inside the parentheses , i and j ,  refe r to the

q signal samples. Since u0(n) = 1 , the t ime-varying

a.(n) = E a.k uk(n) . (2 . 3) LPC coefficients c (i ,j )  are the same as the LPC
00k=0 coefficients.

With a model of this form the constant coefficients The minimization of the total error results in
a. are to be estimated from the speech signal , a p(q+l ) set of equations that must be solved for the

where the subscript i is a re ference to the time- coefficient s alk . The t ime-varying LPC equations

varying coefficient a .(n) ,  while  the subscript k is reduce to the LPC equations for q = 0 , that is,  when

a reference to the set of time functions uk (n) . With - a 1(n) is a constant , a1(n) = a10.

out any loss of generality, it is assumed that The limits of the sum ove r n can be chosen to
u (n) 1. Possible sets of functions that could be correspond to the l imits for the covariance and

0 autocorrelation methods of LPC. For the covari-used include powers of time ance method , the sum ove r n goes from p to N — i ,

k and (2 . 10) can be expressed in matrix fo rm
u k (n) = n (2 . 4)

(2 .11)

or t r igonometric  functions as in a Fourier series
aT = [a a a3~ a~ 1} 0 ~ i ~ q (~~. 12)

uk (n) = cos(kt~rn) k even —i 11’ 21’
(2. 5)

u k (rI) = sin(kcon) k odd 4,T = [c .(O, 1), c
~~

(O , 2 ) c (0 , p) 1 0 ~ i ~ q.oi

where u is a constant dependent upon the length of (2 . 13)

the speech data. Liporace [3J seems to have been Also , ~ is a (q+l) X (q+l) block symmetric matr ixthe f i r s t  to have formulated the problem as in
Eq. 2. 3. H i s  analysis used the power series of with (pxp )  symmetric blocks. The (i , j )  element of

the form of (2 . 4) for the set of functions, the (k , e )  block of ‘Z’ is ckt (i , j ) .

From Eqs. 2 . 2  and 2 . 3 , the predictor equa- Equation 2. 10 can alternatively be expressed
so that ‘T’ is a (pxp)  block symmetric matr ix  withtion is given as (q+l) ) (q+1) symmetric blocks (see [41) .

p ( c i
A similar , but not identical , set of equations ,

~(n) = — Z ( Z a Uk (fl)) s(n—i) (2 . 6) analogou s to the autocorrelation method in the1= 1 ~ k=0 ik
time-invariant case , can be formulated by window-

and the prediction error is ing the data and minimizing the error ove r an in-
f ini te  time interval. In this formulation , in order

A that the matr ix  ‘~‘ in Eq. 2 . 11 can be expressed ase(n) = s(n) — s(n) . (2 .7 ) a block Toeplitz mat r ix , Eq. 2. 3 is mod i fied to
As in LPC , the cri terion of optimality for the coef-
f ic ients  is the minimiza t ion  of the total squared q

a (n) = ~ aerror k— 0 ~kuk (
~

I
~~ 

1 ~ I ~ p. (2 . 14)

a —

F E e 2 
p q

n 
- 

n ( i= 1 k=0 
. time-varying covariance method have been chosen= (n) - l~ s(n) + ~ ~ 

a1~< u~ (n) s(n—i) ) 
The l imits of the error minimizat ion for the

so that the squared error is summed only ove r
(2. 8) those speech samples that can be predicted from

the past p samples. However , the error for the
Minimizing the error with respect to each coeffi- t ime-varying autocorrelatton method is minimized
cient and def in ing  over the entire time interval (the sam e range that

is used for the t radi t ional  LPC autocorrelation
method). Therefore , the distortions of the LPC= ~ 

u~ (n) u~ (n) s(n— i) s(n—j) (2 .9)  coefficient s due to the discontinuit ies  in the data at
the ends of the inte rval evidenced in the t ime-
invariant  case apply also to the t ime-varying coef-

the coefficients are specified by the equation fic ients .  This d i S t  o r t i o n  in the coefficients
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estimated by the autocorrelation method may or is an extension of Levinson’s recursion algorithm
may not be significant depe nding on the data at the to the multichannel f i l ter ing problem.
ends of the interval.

III. Experimental Results for Synthetic Data
Windowing of the signal is a usual practice for

the LPC autocorrelation method in orde r to reduce For the evaluation of t ime-varying linear pre-
the distortion. Howeve r , eve n thou gh windowing diction , the method used was to analyze synthetic
might reduce the end effects  for the autocorrelation data created by all-pole filters with known time-
method , it also imposes an additional t ime varia- varying coefficients.  The pu rpose of these test
t ion upon the speech sample. This tends to cause cases was to determine the general characteristics
two problems. The estimates of the coefficients of time-varying LPC and to obtain some insight into
by t ime-vary ing  LPC will  be adversely affected methods for evaluating the perfo rmance of time-
since the method , by its ve ry formulation , is sen- varying parameter identification techniques.
sitive to any time variation of the system param-
eters such as that caused by the windowing of the The first  set of test cases was generated by
signal. In addition , the window affects the relative all-pole fi l ters  excited by a periodic impulse train
weight  of the errors throughout the interval. Since with each coefficient changing as a truncated power
the windowed data at both ends of the inte rval will or Fourier series. Therefore for these cases ,
be smaller , there is more signal energy in the cen- the form of the system model of the t ime-varying
tral data. Therefore the minimizat ion of the error linear prediction analysis matched the actual sys-
will result in coefficients that in general will re- tem generating the data. The results of these cases
produce the signal in the center  of the interval bet- indicated the differences between using the power
ter than at the ends, or Fourier series for analysis , between using the

covaniance or autocorrelation method of error sum-
Because of distortion in the estimates caused mation (as developed in Section II) , and between

by the end e ffects when the data is not windowed windowing or not windowing the signal.
and the possible adverse e ffects on the estimates
when the data is windowed , the autocorrelation There were many conclusions to be drawn from
method seems to have more disadvantages than the these examples. The differences between us ing a
covariance method. Since a window will have the powe r series or a Fourie r series for the analysis
same distortive effect  for the covariance method , seem to be insignificant .  In general , a f i l te r  using
the use of a window does not seem beneficial,  one series can be represented almost exactly by a

f i l ter  using the other series with e i ther  the same or
Because the number of coefficient s increases or a slightly larger number of term s in the series.

l inearly with  the number of terms in the series *
expansion ( q + l ) ,  there is a s ignif icant  increase in For example , the 6-2 power series f i l te r could be
the amount of com putation needed to determine the represented accurately as a 6-4 Fourier  series fil-

ter , and a 6-2 Fourier series f i l ter  needed a 6-3coeff ic ients  for t ime-vary ing  LPC as compared
wi th  t rad i t iona l  LPC (where q = 0). Howeve r , tech- powe r series f i l ter  to represent it almost exactly.
niques  discussed in refe rence [4] can be used to The covariance method of summation gave bet-make the coeff ic ient  determinat ion eff ic ient . ten results than the autocorrelation method. Under

some circumstances the differences between theFor example , most of the computational effort  two methods were m inor , but this was not a generalis involved with  calculat ing the elements CkI (i , 3) ru’e.
for ‘Z’ and 1’ u s ing  the summation of Eq. 2. 9. But
these elemênts can be computed very eff ic ient ly  by The use of a window had onl y a slight e f fec t  on
tak ing  advantage of the symmetry of ‘T’ and because the analysis results. Windowing did not signifi-
many elements can be easily calculated from pre- cantly degrade the performance of the covariance
viously computed elements without using Eq. 2. 9. methods and , in fact , the autocorrelat ion methods
(It should be noted that the determinat ion of the that used a window seemed to give more accurate
m a t r i x  elements is faster for the power series results than the autocorrelation methods without  a
method than for the Fourier  series method because window.
no t r igonometr ic  functions need to be evaluated.)

These results can be explained , however , by
Once the elements have been calculated , the the fact that the test cases were generated by a

set of equations must  be solved to determine the system whose form was the same as that of the
coef f ic ien t s .  Liporace [3] has developed an effi-  analysis model.  Therefore , these methods can
cient  algorithm to solve the equations for the co- estimate the coeff ic ients  of the series for the time-
variance method where ~ is a block symmetric varying fil ter even with a window superimposed up-
m a t r i x  wi th  symmetr ic  blocks. The covariance on the signal because of the sample data in the cen-
method us ing  the power series has the additional tral part of the interval.
advantage that ~ can be expressed as a block
Hankel m a t r i x  (where all the block mat r ices  along Howeve r , actual signals are not generated by
the secondary diagonal , northeast to southwest , are
equal) for which there is an eff ic ient  solution
[6]. For the autocorrelation method , ‘X’ is a block *A 6-2 power series means 6 poles , (p =6) , with
Toepl i tz m a t r i x  and there is an algorithm given in each coeff ic ient  being a quadratic power series ,
reference  [7] for solving the equations. This method (q=2) .
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the system model of t ime-varying LPC , and the
use of a window wil l  degrade the method’ s ab i l i ty  0 dB
to track the t ime  var ia t ion of the parameters  accu-
rately throu ghout the en t i re  t ime  in te rva l .  It does 4—5 power f i l t e r
not seem that windowing is generally a good prac-
t ice .  In Section IV , the effect  of windowing  actual
nonstat ionary speech on the analysis resul ts  wi l l  4—3 f i l te r  power f ter
be shown.

All of th is  analysis indicates  that the covari- Frequen ’cy kHz
ance method withou t windowing  should be used.
Since the results  seem to be similar  for ei ther
the power or Fourier  series , the power series is Fig.  2. Comparison of smoothed u n i t  pulsepreferred because of its computational advantage frequency resn~ nsesove r the Fourier  series method as discussed in
Section H.

Therefore , it should be able to track changing
The second set of cases involved the response center  frequencies more accurately than the 4-3

of the system to step changes in the center fre- method. LPC with constant coef f ic ien ts  tracked
quency of the poles. This study was carr ied out the step change of the center frequency s l igh t ly
using a four-pole system. The center frequency better  than the 4-5 covariance power method did.
of two poles changed discontinuously.  The 6-3 co-
variance power method withou t windowing was used Test cases were also run to evaluate the abil-
to analyze the data. Of interest  is the trajectory ity to track slowly varying changes. Specif ical ly,
of the center frequency of the f irs t  pole. The pole the f i r s t  pole was varied l inearly ove r the inter-
angle t rajectories for d i f ferent  change s in the cen- val . It was found that t ime-varying l inear predic-
ter frequencies are shown in Fig. 1. The trajec- tion can handle linearly changing poles very well
tory of the poles for the t ime-varying l inear  pre- if the slope is small. For large r slopes the van -
diction method is somewhat like the response of a ation of the pole tends to be smeared over a large r

interval. This supports the s tudies  discussed
earl ier  in this section in which we indicated that
the method acted as a lowpass f i l ter .  Evident ly ,

•c~~~.1 ~~~~~~ ~~~~~~ the higher slope change s are beyond the cutoff
— ..~ ~~t. ~~~~~~~ frequency of the method , y ie ld ing the same esti-

mated pole trajectory as for an abrupt step change.

~~62 I  — :~~ IV. Experimental  Results for Time-varying

— —  H Analysis of Speech
.1.. of

iooP (K ,) In this section , we give an example of the
application of t ime-varying LPC to a nonstat ionary
speech wave form . Several different  methods for
evaluating the performance were used. The pole

Ti 
t rajectories  of t ime-varying LPC were compared

~• ( 000) 0 with the poles of the time- invariant f i l ters  esti-
mated by regular LPC. The log spectrum of each

Fig.  1. Center frequency trajectories for 4-3 t ime- invar ian t  LPC fi l ter  was also compared with
covaniance powe r f i l ter,  the log spectrum of the t ime-varying f i l ter  eval-

uated at the time corresponding to the center of
each of the analysis intervals used for regular

lowpass f i l t e r , but the response is anticipative LPC. As a measure of how well these spectra
since the ent i re  interva l is used to estimate the compare , a log spectral measu re given by Gray
coeff ic ients .  In general , it was found that the sys- and Markel [8] and Turner and Dickinson [91 was
tem response is approximately homogeneous in that used. In addition , the im pulse responses o~ both
the pole angle trajectory for a given center fre- regular and t ime-vary ing  LPC were compared with
quency change is proportional to the size of the the or iginal  speech data. The t ime-varying model
step change and is approximately additive in that that was used was a 12-5 power series fil ter , and
the response to two d i f fe ren t  jumps in one interva l the analysis was performed on an interval of length
is approximately the same as the sum of the re- 150 msec.
sponses to each jump taken separately in the same
interval.  Thus, the method can be thou ght of as For regular LPC , a 12-pole fil ter was used
ac t ing  like a l inear lowpass fi l te r in response to and the length of each analysis interval was 20
change s in the location of the poles. An estimate msec. The center of the interval was shifted by
of the frequency response of the method’s lowpass 15 msec for each successive LPC analysis,  re-
action was obtained from the computed step re- suit ing in some overlap of the data contained in
sponses and is shown in Fig. 2 for the 4-3 and 4-5 each interval,
covariance power f i l ter .  As we would expect , the
4-5 method has a broader 5 frequency response.” For the regu lar 1.PC analysis,  the covariance
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method was used , both with and without windowing varying methods discussed in this pape r , there is
the data. The results for both methods were so no guarantee that the poles of the filte r will remain
similar that only the covariance LPC method with- inside the unit circle. This is a limitation of the
out windowing will be compared with the time- time-varying method , but whether it is a seriou s
varying LPC method , problem in general practice is not known . Because

windowing the data seems to increase the proba-
The pole trajectories for the covaniance powe r bil i ty that the resulting filte r will have poles out-

series method both with and without windowing the side the uni t  circle , it appears that the data should
data are shown in Fig. 3. This illustrates dramat- not be windowed, Since the covaniance method
ically the effect of windowing, because the re are seems better justified analytically than the auto—

correlation method , the covaniance powe r method

~it7~ 
_

(a)
(a )

~~~~~~~~~~~~~~~~~~~~~ 

x

~~~~~~~~~~~~~~~~~~~~~ R 
_ _ _ _  

1

( b )  ( b )

Fi g. 3. Pole trajectories for 12-5 covariance Fig. 4 . Pole trajectories for 12-5 autocorre-
powe r f ilter  ~a) data not windowed , lation power filter: (a) data not win-
(b) data windowed. dowed , (b) data windowed .

poles of the f i l ter  for the windowed data that are (withou t windowing) will be used for comparison
outside the uni t  circle . For a time-invariant filter , with regular LPC.
this would mean that the filte r was unstable. For
a time-varying f i l ter , this is not necessarily true. For the covariance powe r method , it can be
However , the few time-varying filters we have seen that there are only 5 sets of complex poles
examined that have had some poles outside the unit over much of the interval. The other two poles
circle have had impulse re sponses that usually re- were generally real. This was also true occa-
main bounded but excessively large . In general , slonally for the t ime-invariant filters determined
the time-varying filter with poles outside the unit using regular LPC. For comparison purposes,
circle would seem to be of no practical value, only the five sets of poles that were always com-

plex were compared with the time-invariant LPC
The pole trajectories for the 12-5 autocorre- poles.

lation power series filter are shown in Fig. 4.
Again , the autocorrelation filter for the windowed The trajectories of the center frequencies for
data has poles outside the unit  circle. The results both methods agreed favorably. The main devia-
of the autocorrelation method (withou t windowing) tions between the time-varying method and regular
agree favorable with that of the covaniance method . LPC occurred in the first and second poles at the
The most sign ificant diffe rences occur at each end beginning of the time interval, where the “lowpass”
of the inte rval (as we would expect from our die- nature of the time-varying LPC method Es most
cussion in Section III) . evident . The time-varying method corresponded

to 5smoothed” values of the center frequency loca-
This example shows that for any of the time- tions of regular LPC. The rad ius trajectories of
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~ -o t~~ I . .CO.K 12-5 ~~~~~~~~~~~~ ~~~ The spectra for the regular LPC and time—
rh INo Sp .c~~r . varying LPC filters for selected times are shown

CZIITZI TINE in Fig. 5. The spectra have been adjusted so that

15 

the largest value is 0 dB.

We used a log spectral measure to determine
quantitatively the difference between the spectra
for both LPC methods [8], [9]. This spectral mea-

s,oz ir ° - 1.. ai - ~~~ sure SPDIFF is given byAVG SPDIV? — 2 . 3  dl

1/2

30 

SPDIFF = (~~
-?

~~
) . [2 ~~ (ck

_c~ ) 2] , (4. 1)
k = l

Using the cepstral coefficients (ck . k = 1 , p) we
$?DIPT — 2 .2 dl SP OI PY — ~ ,5 dl

AVG Sf0271 - 2 .2  ~ calculated from the filter coefficients (ak . k = I , p).

Turner and Dickinson [~ I state that perceptual
studies have shown that SPDIFF changes of 2 dB
are barely noticeable , but that changes of 3. 5 dB
are cons istently percept ible.

1 2 3 6 5 150 1 2 3 6 5 hON Turne r and Dickinson have also developed an
SPOIlT — 4 . 5  dl 110211 — 3 . 3  d O

AVG SP OI lT  - 3. 4 40 average SPDIFF for filters with t ime-varying co-
efficients. In our study, we want to compare a
filter that has constant coefficients (a.,  i = 1 p)
with a filter that has time-varying coe fficients

So 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(a !(n) , i = 1, . . .  ,p) , where n is evaluated ove r an
interval of interest (which , for now , we will as-

110111 - 3 . 0  dl 11017? - 1.3  dl sume to be [1, LI) .  For this , the time—averageLOG SPOtTY — 1,7 dl
spectral difference is

AVG SPDIFF

72

S P D I ? F  - 2 . 3  dl S P D I P P  - .9 6 dl 
= . — ~ 2 ~ (ck

_c
~ (n) )2] 

1/2
/ 1 0)  

[1

L P
5 5

A VG 510111 — 1 . 3  dO n=l k= l
(4. 2)

Fig .  5. Comparison of actual and f i l ter  spectra where the cepstral coefficients are Ck (n) us ing  thefor preemphasized speech example.
*Diffe rence between 12-0 (regular) LPC coefficients (a

~
(n) , i = I p) . This is a mea-

s p e c t r a  for successive center t imes sure of the average spectral difference between the
(i .e. , between 15 and 30 msec). t ime-invariant fi l ter and the t ime-varying f i l ter

**Difference  (and average difference) be- ove r the interval [l , L].
tween 12-0 and 12-S filter spectra for The spectral difference , SPDIFF , between thesame center time, regular LPC estimated filter and the time-varying

LPC filter evaluated at the time corresponding to
the poles agreed fa irly well, except for the fifth the center of the regular LPC analysis interval is
pole. The center frequency trajectory of the fifth given in the right-hand column of Fig. 5. The time
pole matched very well, while the radius irajectory average of the spectral difference , AVG SPDIFF,
did not. The radius trajectory deviations seem to between the regular LPC filter and the time-
be a result of the “lowpass” nature of the tim e- varying filter for all the time steps n in the cor-
varying method, responding regular LPC analysis interval is also

listed. As an indication of how quickly the speech
Next we compared the log spectra of the all- spectrum is changing, the spectral difference be-

pole time-invariant and time-varying filters with tween the regular LPC filters for successive anal-
log spectra of the speech signal. The spectra were ysis int ervals is given in the left-hand column.
compared because LPC can be thought of as attempt-
ing to match the spectra l envelope of speech with The re are large spectral diffe rences between
the spectrum of the all-pole filter.  This is dis- the successive regular LPC t ime-invariant  f i l ters
cussed in detail in [21. For the time-varying case , for the comparison times of 45 and 60 , and 60 and
the spectrum was defined at a time instant T as 75 msec. These are the t imes in which the signal
the frequency response of the f i l ter  with coefficients characteristics change significantly. The largest
a~

(k) to i = 0 p. average spectral differences between the time-
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varying LPC fi l ter  and the regu lar LPC time- 8. A. H. Gray, .J r. , and J . li Marke l , “Dis tance
invariant filters occur at the times of 30 and 45 Measures for Speech Processing.” IEEE Trans.
msec. The values of the average spectra l d i f f e r -  on Acoust. , Speech and Sig. Proc . ,  Vol. 24 ,
erices were 2 . 5  and 3.4, respectively, which would Ni~. 5, October 1976, pp. 380-391.

indicate that the differences between the two meth-
ods would be perceptible. After  60 msec , the av- 9. J .  Turner and B. Dickinson , “Linear  Predic-
erage difference between the t ime-varying spectra tion Applied to Time-Varying All-Pole Signals ,”
and the t ime-invariant  spectra were generally less in Proc. 1977 IEEE Int. Conf . on Acoust .
than the diffe re nce between the time-invariant spec- Speech and Sig. Proc. , pp. 750-753 .
tra for successive intervals , which would signif y
that the t ime-varying method is “tracking” the
changing spectra ve ry well.

The relatively large deviation of the time-
varying spectrum from the actual speech spectrum
for the times around 45 msec can be explained in
part because of the “lowpass ” action of the time-
varying fi l ter . The severity of the deviation is
probab ly also due to the unequal energy distribu-
tion of the speech signal and of the impulse driving
the system. The conclusion is that the time-
varying f i l ters  should match the hig h energy areas
of the rionstationary signal the best . In order to
have a relatively good match ove r all the data in
the interval , the energy of the signal or the dr iving
impulses throu ghout the entire interval should be
approximately equal . This is discussed further  in
[4].
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